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Abstract

In object-oriented systems development, we can
build a prototype in a short period of time by
reusing library classes or components. Proto-
typing approach has obtained the variety from
the throwaway type to the evolutionary type.
When we develop systems incrementally by ensur-
ing users’ needs, we must consider reconstruction
of the systems depending on their extensibility.
Though we develop a system incrementally, it is
not evident when we must scrap the system and
migrate to a new system. In not a few cases, prob-
lems occur when a small-scale system grows to a
large-scale system.

To understand system evolution processes we
define evolution metrics at four levels, i.e. the
whole system level, the class level, the message
level and the method level. Then we measure
real systems by applying the evolution metrics and
quantitatively analyze the relation between mea-
sures and evolution processes. As results, we can
show effectiveness of the evolution metrics to rep-
resent system evolution process quantitatively.

1 Introduction

Software systems are developed to satisfy users’
needs, under a set of constraints such as func-
tionality, reliability, time to deliver, cost, and
prospected life time. The incremental develop-
ment approach has been considered to have such
an advantage that the system can correspond to
users’ needs quickly and continuously[3]. In 1990,
Tate said “evolutionary prototyping, in the sense
that the prototype evolves into the production sys-
tem should, and perhaps will in future, simply
be called evolutionary development.[13]” As the
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incremental development approach has been ap-
plied to more system development projects, the
differences between the development process and
the maintenance process becomes much smaller.
Thus, a framework for understanding long-term
system changing dynamics is required and the no-
tion of system evolution process may fit to that
purpose.

The incremental development approach is quite
natural with object-oriented system development.
Though object-oriented development process in-
cludes processes to redesign classes to develop
reusable library classes or components for the fu-
ture system extension or new development[1][4],
it 1s hard to distinguish between the development
process and the redesigning process. When we ob-
serve object-oriented system evolution process, we
observe the development process, the maintenance
process, and the redesigning process.

The evolution process contains many kinds of
activities, but it is possible to identify the charac-
teristics of the activities by measuring their prod-
ucts. We measure and analyze evolution processes,
aiming at the following objectives:

e representing the evolution process quantita-
tively,

e extracting software components, like classes
and/or methods, that had better be paid par-
ticular attention for future system evolution.

By achieving the second objective, it will be pos-
sible to help developers decide which step to take,
redesigning step, migration step or the next incre-
mental step forward when the system meets new
specifications. To achieve these objectives, we de-
fine a set of metrics, called evolution metrics, to
measure system evolution process quantitatively
by applying them to a real application system. In
this paper we define “metric” as a scale to char-
acterize attributes, and “measure” as a numeri-
cal value for an attribute assessed for magnitude
against an agreed scale[5].



This paper is organized as follows. In section
2, we describe evolution metrics. In section 3, we
show the results of experiments of applying the
evolution metrics to a real system and analyze
the system evolution process inferred from the ob-
tained measures. In section 4, we discuss related
works. Finally in section 5, we draw some conclu-
sions from our work.

2 Evolution Metrics

To measure object-oriented system evolution pro-
cess, we define four observation levels: the system
level, the class level, the message level, and the
method level, and determine evolution metrics at
each level as follows.

1. The system level

NCD: the number of classes defined by engi-
neers; SLOC: total lines of code summing up
lines of code of all classes; SNOM: the number
of methods defined in the system; NMN: the
number of message names defined in the sys-
tem; NCT: the number of class trees consisted
of application classes which have superclasses
in the common library; and NAC: the number
of abstract classes which have subclasses.

2. The class level
CLOC: lines of code to define methods of each

class; NIV: the number of instance variables;
CNOM: the number of method definitions;
DIT: the depth of inheritance tree (LDIT: the
depth from the top of the total class hierar-
chy; and ADIT: the depth from the lowest li-
brary class); NOD: the number of descendant
classes.

3. The message level

NRM: the number of classes which can re-
spond to the message; NOM: the number of
method definitions corresponding to the mes-
sage name.

4. The method level

MLOC: source lines of code to define each
method.

With these evolution metrics, properties of the
whole system and its components become measur-
able.

These evolution metrics lead to inclusion rela-
tions between the levels. For a system with classes
Cy, Cy, ..., Cp, and for a class C; with methods
Mz, Mis, ..., Mi;, consider the number of lines of
code of class C;, CLOC; and the number of lines

of code of the system, SLOC. SLOC and CLOC;

are related as:

SLOC =Y CLOC;.
i=1

If we denote the number of lines of code of the j

th method of class C; by M LOC%; then

CLOC; = MLOCi;,

ji=1

where n; 1s the number of methods of the class Cj.
A similar relation also holds for the number of

methods. For a class C; with a set of methods
MD;, the total set of methods M D is,
MD = U MD,.
i=1

Similarly, for a set of message names defined in
a class Cy, MS;, the total set of messages M S is,

MS =) MS,.
i=1
In general,
| MS;| = |MD,],
but
|MS| < | MDY,

because MS is not necessarily a direct sum of MS;,
while MD is always a direct sum of MD;. The case
|MS| is equal to |MD] occurs only when there is
no polymorphism in the system.

Other class evolution metrics, NIV, LDIT or
ADIT, and NOD, are measured only at the class
level. We can observe the statistic distribution of
these metrics over the classes at the system level.

3 Experiment

3.1 Overview of the Measured Sys-
tem

The evolution metrics are applied to a thermo-
control simulation system built on PARTS Work-
bench, which i1s a part of VisualSmalltalk. The
system was developed by one engineer and took
eight months from the analysis to the final deliv-
ery. During this period, the system was delivered
six times to the user. Whenever the system was
delivered, the user evaluated it to decide new re-
quirements for the next step. Since this system
was developed step by step to satisfy user’s needs,
its development process can be viewed as an evo-
lution process.

The final structure of the system consists of (
see Figure 1):



Figure 1: Overview of the system

e presentation parts: the parts to construct
simulation facilities visually and depict the re-
sult of the simulation,

e editing parts: the parts to input initial data
for simulation, and

e calculation parts: the parts to execute the
thermo-control algorithm.

The first two kinds of parts were built on PARTS
Workbench. The final system ver.5 has 52 classes (
see Table 1. Ver.4 has the same number of classes).
It took two months from the delivery of the system
ver.0 to that of ver.1 and one month each for the
delivery of the following versions.

Overview of each version is as follows.

e ver.(

A prototype was developed to explore the
possibility that VisualSmalltalk could be ap-
plied to the simulation system. It defined
some parts for simulation using PARTS Work-
bench, and showed its capability of connect-
ing these parts dynamically through graphi-
cal user interface and displayed the results of
a simulation according to their properties.

e ver.l
A minimum set of classes to execute the sim-
ulation is constructed from presentation parts
and editing parts.

e ver.2

The more diverse the components that con-
struct simulation became, the more complex
algorithm was being required. Thus, a set of
calculation parts were newly defined by de-
composing the set of presentation parts to im-
plement the simulation algorithm. Thus, the
basic structure of the system as shown in Fig-
ure 1 was established.

Figure 2: Evolution process of the whole system

e ver.3
As simulation components became more di-
verse and thermo-controlling mechanism was
required to be more complex, the graphical
user interface was changed to make the oper-
ation of the system not too complex.

e ver.4
Some components were reorganized.

e ver.h
The system usability and reliability were im-
proved.

The system ver.0 was a prototype and its system
structure was different from the others. Ver.5 has
almost the same structure as ver.4 and little dif-
ference is observed between them. Therefore, we
select four versions for our evolution study from
ver.1 to ver.4.

3.2 The Result and Analysis

3.2.1 System Level Evolution Process

1. Analysis of the evolution process

We try to relate the evolution metrics, NCD,
SLOC, SNOM, NMN, NCT and NAC, with
system evolution. Evolution stages are mea-
sured from version to version by these met-
rics and S-shaped curves are plotted as shown
in Figure 2 (see also Table 1). Tt can be in-
terpreted that requirements grew during the
period from ver.2 to ver.3 and after ver.3,
requirements growth came to the relatively
stable stage. SLOC, the total lines of code,
shows sensitive reaction to the requirements
changes, while NCT, the number of class
trees, shows less reaction.



Table 1: The system level evolution process

metric | ver.1 | ver.2 | ver.3 | ver.4
NCD 16 26 47 52
SLOC | 1560 | 3714 | 8044 | 8677
SNOM 193 436 885 927
NMN 115 241 452 463
NCT 5 6 6 6
NAC 4 5 9 11

Table 2: The number of classes contained 1n trees

Tree name | ver.l | ver.2 | ver.3 | ver.4
Editing-1 1 1 1 1
Editing-2 3 5 10 11
Presen-1 1 1 1 1
Presen-2 6 8 16 18
Calculation - 6 14 16
Phys-Const 5 5 5 5
total 16 26 47 52

Table 2 shows the numbers of classes be-
longing to class trees defined in each version.
In ver.2, a class tree named Calculation ap-
pears as a new family defined by decomposing
Presen-2 of ver.1. This kind of design decision
process may also be noticed by observing the
change in the number of class trees, NCT in
Table 1. After ver.2, the engineer did not add
any class trees but added new classes as sub-
classes of the existing classes.

The evolution processes of the class tree struc-
ture are schematically depicted in Figure 3. In
this diagram, a dark gray circle represents a
newly added class and a light gray circle rep-
resents a redesigned class which has changed
its hierarchical position in the class tree or has
changed its structure. It can be seen that a
newly added class is defined as a subclass of
an existing application class, and a new class
tree 18 not added except C-1in ver.2. Further-
more, a class is sometimes redesigned when
its subclass is added. These observations may
imply that the design process of the simula-
tion system consists of:

(a) defining application classes under library
classes (see Figure 3 phase 1);

(b) defining a new class tree (see Figure 3
light gray circles in phase 2);

(c¢) adding a new class under an existing ap-
plication class (see Figure 3 dark gray

Figure 3: Evolution process of class trees

circles);

(d) redesigning an existing class, adding a
new class as its subclass if necessary (see
Figure 3 light gray circles in phase 3).

Only the first type of activities in this design
process can be inferred from the increase in
the numbers of classes contained in trees in

Table 2.

Table 3: Statistics of MLOC collected from ver.1

to ver.4
ver.l | ver.2 | ver.3 | ver.4
Mean 8.1 8.5 9.1 9.4
Median 5 5 5 5

Std. dev. 10.8 | 16.0 | 195 | 21.5

85%border 12 11 12 12

Minimum 3 3 3 3

Maximum 116 261 410 427

As an evolution sample, we draw histogram
and cumulative distribution of MLOC (see
Figure 4). Table 3 shows the statistics of
MLOC collected from ver.1 to ver.4. In Table
3 and Figure 4, each version shows that the



The evolution metrics have some advantages
in letting us understand the system evolution
process through:

e clarifying the evolution volume over a pe-
riod of time;

e identifying the existence of methods and
classes which have measures relatively
close to the mean values and are stable
throughout the system evolution;

e identifying the existence of methods and
classes which have a tendency of growing
along with the system evolution; and

e alarming the existence of methods or
classes which may be required to be re-
designed.

3.2.2 The Class Level Evolution Process
Figure 4: Histogram and cumulative distribution

of MLOC

1. Analysis of the evolution process

number of MLOC on the 85% border is equal
to 11 or 12, the minimum 1s 3, the median is 5,
and the mean is between 8 and 10. It means
the measure of MLOC has relatively stable
distribution shape during these periods, but a
few methods with exceptionally large size are
observed and the maximum measure is con-
tinuously growing in Figure 4. The existence
of these exceptional values may indicate some
anomaly in the system design[8]. In the con-
ventional structured programming, a guide-
line of keeping the maximum number of source
lines of code per module to say 50 is often rec-
ommended, because it fits in a standard-sized
paper and can be read at a glance. Follow-
ing this conventional coding style, the desir-
able value of MLOC for Smalltalk may be less
than 10, because it can be read at a glance on
a System Browser window.

These exceptionally large methods are ob-
served only in few classes and they are grow-
ing even larger as the system evolves (see Fig-
ure 5). This may be an outcome of a design
policy to enhance the system and satisfy the
users’ needs as quickly as possible.

By interviewing with the engineer, we found
that the classes with huge sized methods were
identical to those that had been listed up by
the engineer himself as candidates to be re-
designed. It means the evolution metrics can
capture a part of the system to be redesigned.

2. Effectiveness of the evolution metrics

Lines in Figure 5 plot the measures of CNOM
from ver.1 to ver.4. They show that there are
two groups of classes; one is a group of sta-
ble classes and the other is a group of classes
with fluctuating values. Since CNOM repre-
sents the size of responsibility of a class, mea-
sures of CNOM can be regarded as represent-
ing the volume of users’ requirements and/or
designer’s requirements.

The following three classes are typical of the
unstable group, which have been detected by
their peculiar changes in their measures over
time.

o (lassl: a calculation class for thermo-
exchange

It plays a central role in the thermo-
control simulation system and appears
from ver.2 after the first redesigning pro-
cess of dividing Presen-2 into two classes.
Its responsibilities are decreasing dur-
ing the period from ver.2 to ver.3. In-
deed, when we observe CNOM belong-
ing to each class tree, this class has the
biggest measure 63 over 2.5 times big-
ger than the next biggest class measure
25 in the Calculation tree. In ver.3, the
engineer developed a new class as its su-
perclass by generalizing two classes in-
cluding Classi. Therefore, the measure
of CNOM of Classi decreased. This re-
designing process is shown in Figure 3
from ver.2 to ver.3 and redesigned classes
are represented by double circles.



Figure 5: Class evolution process (CNOM)

e (Class2: a presentation class for Classl

It is defined to manipulate Classi for
users through graphical user interface.
The increase of the specification volume
from ver.2 to ver.3 may have influences
on Class?2 directly. It was not redesigned
during the period from ver.2 to ver.3, but
Classl was.

e (Class3: a presentation class for a pipe
which connects simulation parts

It appears in the tree Presen-2 at ver.1,
implying it is produced by the first re-
designing process of dividing Presen-2
into two trees. It is conceivable that the
redesigning processes decrease the mea-
sure of Class3 from ver.1 to ver.2.

From their evolution process, the classes clas-
sified into the unstable group tend to increase
their responsibility unless their class family
structure is redesigned.

Our measurement detects Classi, Class2 and
Class3 as classes with relatively large mea-
sures of CNOM, NIV and CLOC. The mea-
sures of CNOM, NIV and CLOC have high
correlation coefficients between them. We
show the correlation coefficients of CNOM,
NIV, CLOC and ADIT in Table 4. It shows
low correlations of ADIT with the other met-
rics. We selected the pair of CLOC and
CNOM that have the highest correlation co-

Table 4: Measures of correlation coeflicient be-
tween class evolution metrics(ver.3)

metric | CLOC | NIV | CNOM | ADIT
CLocC 1
NIV 0.59 1
CNOM 0.89 | 0.84 1
ADIT -0.18 | 0.27 0.04 1

Figure 6: Scatter plot of CLOC and CNOM

efficient and plotted points corresponding to
classes(see Figure 6).

We can see a clear linear relation between
these two values for classes of each class tree.
Table 5 shows regression coefficients between
CLOC and CNOM, which correspond to the
gradients of these lines, indicating the mean
values of MLOC for each class tree.

It 1s interesting that in the scatter plot we
can find one point obviously far away from
the line in the Editing parts tree. The class
corresponding to this point was first defined
in ver.3 and was redesigned in ver.4, to be
plotted back on the line.

By drawing the scatter plots belonging to
class trees, we have detected a class which had
peculiar design characteristics and observed
that the class had been redesigned to have
normal measures.

This observation suggests that there are some



Table 5: Regression coefficients between CLOC
and CNOM

Tree name | ver.1 | ver.2 | ver.3 | ver.4
Presen — 2 6.80 7.93 8.69 9.31
Editing-2 18.39 | 19.88 | 20.07
Calculation 5.67 6.23 6.20

implicit design rules for each class family that
govern the properties of its classes or meth-
ods. Finding such rules may lead to the dis-
covery of exceptional and maybe erroneous
design parts.

2. Effectiveness of the evolution metrics

The evolution metrics have some advantages
in letting us understand the class evolution
process through:

e clarifying the class evolution volume over
a period of time;

e identifying classes which have measures
relatively close to the mean values and
are stable throughout the system evolu-
tion;

e identifying classes which have a tendency
of growing along with the system evolu-
tion; and

e alarming classes which may be required
to be redesigned and indicating required
redesigned direction.

In the same way, we can show the effectiveness
of the method level evolution metrics to identify
methods which have measures relatively close to
the mean values and are stable throughout the sys-
tem evolution or to identify methods which have a
tendency of growing along with the system evolu-
tion.

4 Related Work

Henderson-Sellers, B. and Edwards, J. M. com-
pared object-oriented systems life cycle with tra-
ditional software life cycle[4]. They depicted
object-oriented life cycle by the fountain model
and showed interaction processes between require-
ments evolution and design and implementation.
Many researches of object-oriented metrics have
been conducted from early 1990°s[14]. Chidamber,
S. R. and Kemerer, C. F. defined six metrics, called
CK metrics, to determine the quantity of class cou-
pling, class cohesion, method complexity, and un-
derstandability of classes for reuse[2].

Lorenz, M. and Kidd, J. discussed many met-
rics for managing projects and estimation[8]. Our
results show almost the same mean values of class
level metrics like CLOC, CNOM or NIV for every
version as those given in their book.

Since our target system was developed in
Smalltalk, it was easy to measure the metrics
by using Metalevel facilities[6]. However, since
Smalltalk has the complete dynamic binding mech-
anism, the cohesion and coupling of objects[10] can
be measured only at the run-time system. We are
now trying to analyze dynamic metrics of a system
at run-time.

Stark, G. and his colleagues applied metrics for
the systems management. They said “managers do
not need exact models or metrics to make decision
and excellent and useful results are regularly ob-
tained from simple models.” [11] Furthermore, they
discussed effectiveness of measurement over time.

Lehman defined five laws for the system
evolution[7]. His second law was “increasing com-
plexity: the number of superimposed changes in-
creases, the system becomes more complex.” Ac-
cording to his law, three classes detected from
measures of CNOM over time might make the
system complex. But in object-oriented systems,
since the redesigning process is usually involved,
the system does not become complex straightfor-
wardly. By redesigning the system, its life time
gets longer, but it sometimes requires more cost.

Tamai, T. and Torimitsu, Y. conducted a sur-
vey of software lifetime[12]. As the results of their
survey, they noted that software replacement could
bring benefits by introducing new technologies and
educating inexperienced engineers. When we use
object-orientation, we can add other benefits from
rebuilding an application framework that makes 1t
possible to get more robust systems and to satisfy
users’ requirements more quickly. We can see this
kind of evolution in the redesigning process from
ver.l to ver.2 of our case study, but the redesigned
volume is too small to call 1t replacement.

5 Conclusion

This paper described the results of experiments
and quantitative analysis of system evolution pro-
cesses over a period of time. Software development
usually has some specific objectives, i.e. to ex-
amine 1ts feasibility and usability to satisfy users’
needs keeping extensibility. We think there is a
different evolution process for each software devel-
opment achieving these objectives. To understand
the system evolution process, we defined and ap-
plied evolution metrics to the real system. After
analyzing the values measured by evolution met-



rics,

it became clear that the effects of measuring

system evolution process over time were clarified:

by measuring system evolution in terms of
SLOC, SNOM, NMN, NCT and NAC, we can

infer developed volume;

by measuring class evolution in terms of
CLOC, NIV, CNOM, and ADIT, we can clas-

sify classes into an unstable group and a stable
gtoup;

by quantitatively analyzing measures, we can
extract some software components, classes
and/or methods that have evolved their size
continuously and have large size, and others
that have changed little and have kept their
size rather small;

by researching class evolution process, we can
identify characteristic values like CLOC per
CNOM for each class hierarchy;

by 1dentifying specific values for each class hi-
erarchy, we can point out irregular classes and
suggest class hierarchy dependent values as
implicit design norms.

Thus, we have showed that the evolution met-

rics

can be used to represent the evolution pro-

cess quantitatively and to extract software compo-
nents, like classes and/or methods, that had bet-
ter be paid particular attention for further system
evolution. We must observe more cases to deepen
our understanding of object evolution processes.
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