Evolutional Characteristic of Class Inheritance Trees

Takako NAKATANI

Tetsuo TAMAIO

Graduate School of Arts and Sciences
University of Tokyo
3-8-1, Komaba, Meguro-ku, Tokyo 153, Japan
Tel: +81-3-5454-6847

tina@graco.c.u-tokyo.ac.jp, tamai@graco.c.u-tokyo.ac.jp

ABSTRACT

In our previous work, we studied object evolution pro-
cesses by tracing a real case of software development. It
was shown that class inheritance trees tend to keep their
peculiar values of lines of code per method. The pecu-
liar value can be considered to represent a characteristic
of an inheritance tree and to affect class evolution as a
constraint.

We continued the work and have studied other two soft-
ware development cases. The objectives are to examine
whether the existence of tree peculiar values 1s a peculiar
phenomenon of the first case, whether the values affect
class evolution directions, and whether the values are
derived from developers’ design habits. Our conclusions
are that class trees have their peculiar values indepen-
dent of developers and classes of a tree tend to have a
unique common value determined by the tree properties.

Keywords
object-oriented software, metrics, evolution, inheritance
tree

INTRODUCTION

We study several software development cases to reveal
object evolution processes quantitatively. Purposes of
our studies are:

1. to evaluate object maturity for reuse quantitatively by
analyzing object change processes,

2. to indicate time to redesign classes, and

3. to show object design properness by statistical data.

In our previous work, the first purpose was pursued by
observing object evolution processes. As a result, sev-
eral different types of object evolution processes were
revealed. One type of objects become stable after chang-
ing their specifications as the system grows. Such ob-
jects would be treated as reusable classes after reaching
the stable stage[8].

Statistical data such as the number of lines of code per
class and the number of methods per class, measured
over the whole system, have non-Gaussian distribution][1,

6]. The distribution pattern has its median on the left
side and long tail on the right side. To show the class
design properness and time to redesign classes, we have
traced the paths of classes that had been moving in the
measured space[7]. Some classes changed their statis-
tical values frequently and generally tended to increase
their values. If the designers had watched class moving
paths through measurement, they could have objectively
extracted classes needed to be redesigned. Therefore,
tracing object evolution processes is useful to evaluate
design properness.

We study to pursue the third purpose by focusing on
tree evolution processes and to clarify evolutional char-
acteristic of class inheritance trees.

This paper is constructed by the following sections. The
next section introduces the results of our previous study
and proposes hypotheses. The following section shows
other software development case studies to verify the
hypotheses. The remainder of this paper discusses the
results of the verification.

PRELIMINARY EXAMINATION

Applied Metrics

To evaluate the degree of object changes, we use met-
rics called CK metrics proposed by S. R. Chidamber
and C. F. Kemerer as object-oriented design metrics[3].
We adapt WMC (Weighted Methods per Class) and
DIT (Depth of Inheritance Tree) defined in CK met-
rics, for characterizing object change processes. We use
NOM (Number of Methods) for WMC, which means all
weights are set to 1[1]. DIT is defined as the number of
classes along the path from the class library to the tar-
get class, which represents readability[7]. Method lines
of code (MLOC), class lines of code (CLOC), and the

number of variables (NOV) are also used as the metrics.

Overview of a Case
The overview of the target system of the preliminary
study 1s:

[SystemA]
o Number of versions: 4 versions

e Development term: 8 months

g&%q All Trees cLOC Editor Tree
M 8001
10001 700 '
@
3 600
800) %
g 500 . ﬂ\A
600[L X
8, ¢ 400
400 4 F
SR A 300 &
L gfas® 200 X
200
! , , T
0 50 100 NOM 0 0" 25 20
& Presen.CLOC m Editor.CLOC NOM
A Calcu.CLOC
Iculator T
cLoc Presentor Tree y cLOC Calculator Tree
*
1000 350 X
A 300
800
250
600 200
Xg * 2
400 #‘ 150 *
100 .
200 -
50
% L L 1 0 1 1
50 100\ out50) 50 NOM 100

Figure 1: Scatter diagram of CLOC and NOM on
SystemA

e Number of developers: 1

e Language: Visual Smalltalk

e Development process: incremental

e System function: editor for building simulation systems

e Size of the system: ver.4 has 52 classes, 927 methods and
8677 lines of code. They are 3.25 times, 5.56 times and 4.80
times as large as the corresponding value of the system of
ver.1.

SystemA has been released to users once a month, and
the engineer accepted new user requirements to be re-
flected on the system. Measurements are collected after
the development of a prototype. There are following
three class trees in SystemA:

e Editor Tree: a tree of classes for user interface to input
initial data for simulation,

e Presenter Tree: a tree of classes for constructing sim-
ulation facilities visually and depict the result of the
simulation, and

e Calculator Tree: a tree of classes for executing simu-
lation algorithm.

Correlation analysis and tests are performed for these
trees.

Correlation Analysis

Figure 1 shows scatter diagrams of CLOC against NOM
for the three trees. The diagram at the top-left of Figure
1 shows points of all classes of the system for all versions.
Other diagrams represent points of classes of each tree
for all versions, respectively. The points in each diagram
indicate that there is a high positive correlation between

CLOC and NOM.

Table 1 shows correlation coefficients between CLOC
and NOM for all classes and for each class tree. The cor-
relation coefficient of each tree is positive and 1s higher
than that of a set of all classes. We call the number of
lines of code per method for a class LOCpM, and the
mean of LOCpM. of classes in a tree LOCpM;,.

Table 1: Correlation coefficients between CLOC
and NOM per tree

tree all | Presenter | Editor | Calculator
Correlation
Coefficient 0.871 0.969 0.951 0.994

Table 2 gives common descriptive statistics of measure-
ments of LOC'pM, and shows that each tree keeps their
LOCpM;, almost constant from ver.1 to ver.4.

We can conclude that a class tree should have its own
peculiar value as LOCpM;,.. If there is an original value
for every class tree and the value is stable as the system
grows, there are possibilities that such knowledge would
help engineers design classes.

Table 2: Distribution of LOCpM, for each tree
defined in SystemA

Presenter Tree | ver.1.0 | ver.2.0 | ver.3.0 | ver.4.0
Mean 7.63 8.44 8.63 8.93

Std Dev 1.89 1.27 1.62 1.78
Mini 5.55 6.10 6.00 6.00
Max 10.86 10.50 12.29 12.60
Data size 6 8 16 18
Editor Tree ver.1.0 | ver.2.0 | ver.3.0 | ver.4.0
Mean 15.10 16.34 16.32 16.24

Std Dev 2.16 2.63 3.11 4.07
Mini 13.14 13.14 12.00 7.00
Max 17.14 20.61 21.81 22.09
Data size 4 6 11 12
Calculator Tree | ver.1.0 | ver.2.0 | ver.3.0 | ver.4.0
Mean - 5.43 5.68 5.74

Std Dev - 0.70 0.90 0.85
Mini - 4.40 4.18 4.18
Max - 6.33 7.00 7.00
Data size - 6 15 15

Before evaluating the possibilities, we focus on a class
change process. In Figure 1, an arrow in the editor tree
diagram represents a direction of a class change from
ver.3 to ver.4. The arrow indicates that LOCpM, of the
class gets close to LOCpM;, of the tree. In the interview
with the engineer, he said he had an impression that
the class had been wrongly designed. Such impression
has urged him to change the class. It implies that a
hint of inappropriate design of a class could be obtained

objectively if the distance between the line and the point
of a class were measured.

To examine if LOC'pMjy, is peculiar to a class tree, two-
tail t-test was performed at 5% significance level for
pairs of trees. Table 3 shows p-values calculated by the
t-test. As a result, we can reject a null hypothesis: the
values of LOCpMy, of class trees are the same, since all
p-values are smaller than 0.05.

Table 3: P-values of two-tail t-test (5% signifi-
cance level) for SystemA

metric Editor | Presenter | Calculator
Editor - -

Presenter | 1.05E-15 -

Calculator | 2.22E-19 2.04E-16 -

To examine the stability of LOCpM,, two-tail t-test
and F-test are performed at 5% significance level for
the mean and the variance of measurements of a version
and the next version of each tree. Table 4 gives p-values
calculated as the results of t-test and F-test. First, the
table shows that there are not significant differences be-
tween the mean of measurements of a version and the
next version of each tree, since p-values are greater than
0.05. Second, from the results of two-tail F-test, the
table shows that there are not significant differences be-
tween the variance of measurements of a version and
the next version of each tree. We cannot reject a null
hypothesis: the mean and the variance are not changed
by versions. Each tree has kept its variance during the
system growth.

Table 4: P-values of two-tail t-test and F-test (5%
significance level) for SystemA

t-test ver.1-2 | ver.2-3 | ver.3-4
Presenter 0.229 0.470 0.662
Editor 0.459 0.989 0.963
Calculator 0.485 0.923
F-test ver.1-2 | ver.2-8 | ver.3-4
Presenter 0.275 0.273 0.795
Editor 0.793 0.746 0.405
Calculator - 0.590 0.771

Hypotheses of Class Tree Characteristics

To examine whether this kind of characteristic of a class
tree can be found in general, we verify following three
hypotheses:

1. A class inheritance tree has a peculiar value of
LOCpMy,, the mean of the number of lines of code
per method,

2. The variance and the mean of LOCpM. of each class
tree are stable during the system growth, and

3. The peculiar value does not depend on developers.

VERIFICATION OF HYPOTHESES

Overview of Cases

To verify the hypotheses, we study object change pro-
cesses of the following systems:

[System B

Number of versions: 4 versions
Development term: 8 months
Number of developers: 1
Language: Visual Smalltalk

Development process: incremental

System function: cash receipts transactions management
system, its user interface is constructed by PARTS Work-
bench, a development environment of Visual Smalltalk.

e Size of the system: ver.4 has 62 classes, 2644 methods
and 20470 lines of code. They are 1.68 times, 3.51 times
and 3.07 times as large as the corresponding value of the

system of ver.1,

[System (]

Number of versions: 14 versions

Development term: 3 months

Number of developers: 4

Language: Visual Smalltalk

Development process: Waterfall

System function: stock management systems.

Size of the system: ver.14 has 133 classes, 1487 methods
and 14934 lines of code. They are 1.51 times, 2.13 times
and 2.27 times as large as the corresponding value of the

system of ver.1.

SystemB was developed by an engineer incrementally.
The system has been released to users once by two months,
and the engineer accepted new user requirements to be
reflected on the system.

SystemC was developed by four engineers and did not
receive user requirements changes during the system
growth. Class changes were derived from developers’
design changes in the straightforward development pro-
cess.

Case: SystemB
QOverview of Class Trees
four trees:

We picked up the following

e TreeBl: a tree of classes that mediate between GUI
objects and database objects,

e TreeB2: a tree of classes that manipulate persistent
objects through putting them in a list,

e TreeB3: a tree of classes that represent persistent ob-
jects, and

C’z?goog All classes defined in System-B ¢ oc TreeB1,B2 and a comparable class

2500
L TreeB3and B4 A
2000 NN 2000
\
1500 + TreeBl\ 1500
1000 | 1000
AN
500 TreeB2 500
A
100 200 o T 00
NOM NOM
cLoc TreeB1 CLOC TreeB2
700 500 %
-
600 °7
400 /
500 o
400 300 F
300 * 200 | X
200 o $
100
100 ® ®
&)
. .
% 50 100 %/ 50 100
NOM NOM
CLOC TreeB3 CLoc TreeB4
1200 900
A 800 | X
1000 X g 700 | n
800 ‘K}‘ 600 | &
500 Z
600 X 400 | x4
400 300F 7%
200 F
200 5 100 |
. \ 0 , .
% 50 100 150 0 50 100 150
NOM NOM

Figure 2: Scatter diagram of CLOC and NOM of
SystemB

e TreeB4: a tree of classes that construct tables by re-
trieving persistent objects.

TreeB1 and TreeB2 have a common superclass and TreeB3

and TreeB4 are trees expanding direct from the class

Object.
Verification of Hypotheses

1. The first hypothesis

Figure 2 shows scatter diagrams of CLOC versus NOM
for a set of all classes and four trees of SystemB, re-
spectively. A high positive correlation between CLOC
and NOM can be observed in the diagrams. The re-
sults of correlation analysis show that the highest cor-
relation coefficient is 0.994 of TreeB2, and the lowest
15 0.915 of TreeB4. There is a high positive correlation
between CLOC and NOM in SystemB.

Table b gives common descriptive statistics of LOCpM..

The results indicate that each class tree changes

LOCpMy, from ver.l to ver.2. Ignoring the data of

ver.l can be justified, because the size of the data
of ver.l is relatively small. In the case of TreeB2,
since the tree was constructed in ver.2, four classes
defined in the system in ver.l have been redesigned
to be subclasses of a newly added superclass in ver.2.
Therefore, differences between the variance of ver.1l
and ver.2 do not come from changes of TreeB2 char-

Table 5: Distribution of each tree defined in Sys-
temB

TreeB1 ver.1.0 | ver.2.0 | ver.3.0 | ver.4.0
Mean 8.04 12.29 9.06 9.07
Std Dev 1.80 4.53 1.64 1.64
Mini 7.00 4.56 5.74 5.74
Max 10.11 16.00 10.00 10.00
Data size 3 7 6 6
TreeB2 ver.1.0 | ver.2.0 | ver.3.0 | ver.4.0
Mean 8.21 5.28 5.90 5.91
Std Dev 3.64 2.08 0.76 0.76
Mini 5.5 2.00 4.45 4.45
Max 13.33 7.27 6.66 6.66
Data size 4 11 7 7
TreeB3 ver.1.0 | ver.2.0 | ver.3.0 | ver.4.0
Mean 4.97 7.08 7.37 7.49
Std Dev 1.26 0.78 1.10 1.13
Mini 2.25 6.17 5.12 4.95
Max 6.00 8.58 9.18 9.18
Data size 8 10 11 11
Tree B4 ver.1.0 | ver.2.0 | ver.3.0 | ver.4.0
Mean 5.77 6.80 7.67 7.77
Std Dev 0.30 1.17 2.37 2.38
Mini 5.43 4.85 4.89 4.89
Max 6.10 8.26 12.29 12.29
Data size 4 7 7 7

acteristics but the redesigning processes.

Figure 2 represents object evolution processes. An
arrow represents directions of class changes. The gra-
dients of the lines in the upper two diagrams indicate
LOCpM;, of TreeBl and TreeB2. The path shown
in a circle in the upper right diagram is an evolution
path of a class that shares the same superclass with
TreeB1 and TreeB2 but is not a member of either tree.
The distance of the path from the regression lines of
TreeB1 and TreeB2 indicates the different character-
istic of this class.

In the scatter diagram of TreeBI, the middle left of
Figure 2, circled points represent an evolution process
of a class defined in ver.2. The tail of the arrow is
not close to the mean of the TreeB1, but the head of
the arrow indicates that the class has been changed to
have a closer value to the tree peculiar value in ver.3.

In the scatter diagram of each tree, the classes move
their points along the line. Such class moves indicate
that the tree preserves its peculiar value, LOCpMy,,
during the system growth.

Two-tail t-test is performed at 5% significance level
to study if there is a significant difference between
LOCpM;, of pairs of trees. Table 6 gives p-values cal-
culated by t-test for each pair of trees. There is not
significant differences between LOCpM;, of TreeB3
and TreeB4, since the p-value is greater than 0.05. P-

values of other pairs of trees are smaller than 0.05,
which are not regarded as the same mean. We can
reject a null hypothesis: LOCpMy, is equal for class
trees, since there are p-values smaller than 0.05. There-
fore, the first hypothesis: a class inheritance tree has
a peculiar value of the mean of the number of lines of
code per method (LOCpMy,), is verified.

Table 6: P-values of two-tail t-test (5% signifi-
cance level) for SystemB

TreeB1 | TreeB2 | TreeB3 | TreeB4
TreeB1 -
TreeB2 0.000 -
TreeB3 0.000 0.004 -
TreeB4 0.001 0.006 0.505 -

. The second hypothesis

Two-tail t-test and F-test are performed at 5% signif-
icance level to study if there are significant differences
between the values of mean or variance of a version
and the next version of each tree.
shown in Table 7. P-values calculated by t-test for
each pair of trees are greater than 0.05, except the
term from ver.l to ver.2 of TreeB3. The exception
can be ignored, because the size of the data of ver.1
is relatively small. These p-values indicate that there
are not significant differences between the mean of a
version and the next version.

The results are

P-values derived from F-test for TreeB1 and TreeB2 in
the term from ver.2 to ver.3 are smaller than 0.05, but
other results shown in Table 7 are greater than 0.05.
It means that TreeB1l and TreeB2 have changed their
variance in the term from ver.2 to ver.3. Each Arrow
in the diagram of TreeB1 in the middle left of Figure
2 represents a path of a class evolution from ver.2
to ver.3. If we imagine a line with the gradients of
LOCpMy, in the diagram, the directions of the arrows
seem to point to the line. When LOCpM, of classes of
TreeB1 were not close to LOCpMy, of the tree in the
early term, these classes have been redesigned in ver.3
and they got close to the tree peculiar value. LOCpM.
of the circled two classes of TreeB2, defined in ver.2,
are 2.00 and 2.50, respectively, and these classes were
deleted 1n ver.3. These classes make the variance of
TreeB2 smaller in the term from ver.2 to ver.3. If we
ignore these two classes, p-values derived from F-test
of TreeB2 become greater than 0.05 after ver.2. Now,
we might accept a null hypothesis that the variance of
a tree is stable between a version and the next version.

The second hypothesis: the variance and the mean
of LOCpM., of each class tree are stable during the
system growth, is verified.

Table 7: P-values of two-tail t-test and F-test (5%
significance level) for SystemB

t-test ver.1-2 | ver.2-3 | ver.3-4
TreeB1 0.164 0.128 0.996
Tree B2 0.068 0.459 0.992
TreeB3 0.001 0.337 0.812
TreeB4 0.164 0.888 0.861
F-test | ver.1-2 | ver.2-3 | ver.3-4
TreeB1 0.284 0.041 0.998
Tree B2 0.157 0.022 0.991
TreeB3 0.196 0.394 0.926
TreeB4 0.144 0.151 0.983

Case: SystemC
Overview of Class Trees We focus on the following eight
trees of System (' developed by four engineers.

e TreesCl: a tree of stock domain object classes con-
structed by the following trees that inherit from a
common superclass.

— TreeC10: developed by Persone,

TreeC11: developed by Persone,

— TreeC15: developed by Persone,

— TreeC16: developed by Personf, and

TreeC21: developed by Persong.

e TreesC7: a tree of mediator object classes between

persistent objects and the stock domain objects in

memory, developed by Person-,

— TreeC70, and

— TreeCT71.
These two trees also inherit from a common super-
class.

and

o TreeC82: a tree of objects that manage constant ta-
bles for tax rates, developed by Personé.

Verification of Hypotheses

1. The first hypothesis

Figure 3 shows scatter diagrams of CLOC versus NOM
for a set of all classes and trees of SystemC. The high
positive correlations between CLOC and NOM can be
observed in the diagrams. The results of correlation
analysis shows that the highest correlation coefficient
of TreesC1 1s 0.927, the lowest of TreeC82 is 0.561 and
a correlation coefficient of all classes 1s 0.793. There
is a positive correlation between CLOC and NOM in
SystemC.

In the bottom-left of Figure 3, a marked class lies in
the position far from other points. Although it is a
superclass of TreeC70 and TreeC71, the class cannot
be considered as a class belonging to each of these
trees.

TreeC82 has lower correlation coefficient than other
trees. Classes belonging to TreeC82 manage constant

cLOC All classes of System-C cLOC TreesC1
X x .
500 300
x A
400 x Xx 250 a ®
200 +
300 ¢ * 150 A X X
200f X a & I ox
X A A 100 @ A
A
100 £ 50 M
. . 0 \ \
0 20 40 NOM 60 0 20 40 NOMm 60
CLOC TreesC7 CLOC TreeC82
A 5
500 n C 100 X
400+ A "a 80
300 | 60
X
A
200 ﬁ 40 «
100 | Mt 20 X
r.Y X
1 | 0
20 40 NOM 60 0 2 4 NOM 6

Figure 3: Scatter diagram of CLOC and NOM of
SystemC

tables and provide methods to get values from the ta-
bles. These methods size depends on the table size,
not on the responsibility of the class. TreeC82 is con-
sidered exceptional.

Table 8: Distribution of LOCpM, for each tree
defined in SystemC

TreeC10 | TreeC11 | TreeC15 | TreeC16

Mean
(LOCpM,) 4.87 5.17 5.99 5.58
Std Dev 0.98 1.23 2.54 1.98
Mini 4.00 4.00 4.00 4.00
Max 6.56 7.50 10.93 9.00
Data size 13 12 6 8
TreeC21 | TreeC70 | TreeC71 | Tree(C82
Mean 4.90 17.30 23.28 16.44
Std Dev 2.20 8.97 10.10 13.70
Mini 4.00 7.38 11.60 6.00
Max 11.78 36.77 43.77 48.00
Data size 13 9 11 8

Table 8 gives common descriptive statistics of LOCpM,
for all classes in the final version of SystemC. The re-
sults indicate that there are differences between
LOCpM,, of class trees.

Two-tail t-test is performed at 5% significance level for
the values of LOCpMy, of the trees. Table 9 gives p-
values as the results of the test. The values show that
there are two groups: one group is constructed by
TreeC10, TreeCl1, TreeC15, TreeC16 and TreeC21,
and the other group is constructed by TreeC70 and
TreeCT71. P-values between trees belonging to the
same group are greater than 0.05, but the values across
the groups are smaller than 0.05. It means that there
are significant differences between LOCpM;, of each

group. FEach group is constructed by the same class
trees derived from the common superclass and is re-
garded as the big class tree.

Therefore, we can reject a null hypothesis: the means
of lines of code per method are equal for class trees.
The first hypothesis: a class inheritance tree has a
peculiar value of the mean of the number of lines of
code per method (LOCpMy,), is verified.

2. The third hypothesis

For the System(, we focused on differences between
two engineers who developed classes of the same tree
and studied if characteristic of engineers affect the
value of the tree. The first engineer named Persona
developed TreeC10, TreeCl1l and TreeC15. The sec-
ond engineer named Personf developed TreeC16 and
TreeC21. In Table 9, any differences between Persona
and Personf are not recognized. Therefore, we can
accept a null hypothesis: engineers do not make dif-
ferences to values of the same tree. The third hypoth-
esis: the peculiar value is independent of developers,
is verified.

DISCUSSIONS

We verified the hypotheses by two software development
cases. From our studies, we found interesting values of
class trees that are determined by the tree characteris-
tics and are independent of developers. In the rest of
this paper, we discuss the causes of the peculiar values
and their effectiveness.

Causes of the Peculiar Values

Figure 4, Figure 5 and Figure 6 show histograms of fre-
quency of MLOC, method lines of code, with cumulative
frequency for each tree of each system, respectively. Ev-
ery diagram has the very similar shape that has a peek
on the left edge and a long tail on the right.

The differences between the values of trees do not come
from the shape of the histogram nor the position of the
peek, but from the length of the right side tail. Cal-
culator tree of SystemA has the smallest mean in the
studied trees and TreesC7 of SystemC has the greatest.
Differences between the figures of two trees are obvi-
ous. Frequencies of MLOC in Calculator tree gathered
at smaller numbers than those in TreesC7.

If a method has a complex role (i.e., manipulate various
objects and answer the calculated results, manages ob-
jects relationships), MLOC must be great. If a class has
a complex role, the number of lines of code per method
must be great. Such characteristic of a class is com-
mon to the classes in the common tree, because the
inheritance tree is constructed by classes with a simi-
lar behavior. Consequently, LOCpM;, 1s determined as
the characteristic of a tree. The characteristics cannot

Table 9: P-values of two-tail t-test for SystemC

Tree c10 C11 15 c’16 21 70 c71 | C82
c10
C11 | 0.510
C15 | 0.337 | 0.483
C16 | 0.369 | 0.610 | 0.752
C21 | 0.964 | 0.708 | 0.389 | 0.474
C70 | 0.003 | 0.004 | 0.005 | 0.004 | 0.003
¢71 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.178
82 | 0.049 | 0.053 | 0.068 | 0.062 | 0.050 | 0.882 | 0.254
number of Calculator Tree cumulative number of Editor Tree cumulative
methods frequency methods frequency
400 100% 300 100%
80% 250 80% _
300 60% 200 60; number of TreeBl cumulative number of TreeB2 cumulative
200 0% 150 400/0 methods frequency methods frequency
100 20% 100 2ot 250 100% 400 100%
b, . % 50 7 200 80% 300 80%
Re88888,.0c @ ngwo'gg;fl_/gc 150 60% 60%
—
- 100 40% 200 40%
100
number of Presenter Tree cumulative 50 II 20% i 20%
methods frequency 0 NS 0 0% 02%5"'S v o v o 0 0%
1000 100% ¥ © ™2 32 Moc - ® Y @™ % g Moc
800 80%
600 60% . .
400 40 number of TreeB3 cumulative number of TreeB4 cumulative
hod frequency methods frequency
200 20% methods
i 1500 100% 800
S%gs g88¢ o 80% 600
S 9 3 Moc 1000 60%
0% 400
. o 500
Figure 4: Histogram of MLOC of SystemA E 20% 200 I 20%
o4llble... 0% 0edlllfa... 0%
28288y 28kgesy
3 mLoc ® ¥ ® g MLOC
be changed unless the behavior of classes of the tree Figure 5: Histogram of MLOC of SystemB
changes.
The results of our study can fit in with the developers’
technical class categorizations.
Effectiveness of Observations for the Developers
From our studies, the first hypothesis: a class inher-
. . . TreesC1 . TreesC7 .
itance tree has a peculiar value of lines of code per number of cumulative number of cumulative
. . . methods frequency methods frequency
method, is verified. If a class is added to a class tree, 400 100% 50 100%

the class must have the value close to LOCpMy, of the
tree sooner or later. If LOCpM. of the class is not close
to the peculiar value of the tree, the distance between
these two values may imply poor design. Our future
work is to verify the truth of the law: the characteristic
of a class inheritance tree help engineers evaluate their
class design properness quantitatively.

Evolution of Class Trees and Classes

M. M. Lehman and L. A. Belady studied system evo-
lution and discovered laws of software evolution[2, 5].
They proposed laws of “continuing change” and “in-
creasing complexity”. Here, we focus on the evolution
processes of classes and their inheritance trees and try
to clarify the characteristics to be changed and not to
be changed. Object-oriented systems tend to be devel-

300
200
100

TreeC82
number of

methods
25

40
30
20
10

80%
60%
40%
E 20%
loa aBaasllg
L L g 0%

Q ~ O O
= MLOC

Il

[=]
®

=

cumulative

frequency
100%

80%
60%
40%
20%
0%
MLOC

0
o
—

Figure 6: Histogram of MLOC of SystemC

oped incrementally[4] and is often redesigned to be more
robust systems for user requirements changes. Along
the system growth, some classes change their complex-
ity continuously with keeping distribution shape of mea-
surements of the whole systems [7]. This characteristic
follows the law of software evolution.

We want to discuss the law of inheritance tree evolu-
tion that exists only in object-oriented software. From
our observations, the trees can keep their peculiar val-
ues and their distribution along the system growth and
the classes in the tree change their values towards the
direction of the lines determined by the tree peculiar
values. The characteristic of class inheritance trees are
considered as class evolution circumstances which affect
the ways of their evolutions.

Class tree evolution processes need to be studied in de-
tail qualitatively to verify the second hypothesis. Trees
may have their own evolution processes, though we focus
on the general evolutional characteristic in this paper.

CONCLUSIONS

We verify hypotheses by studies of three systems. From
the results of our studies, the peculiar values of class
inheritance trees is considered to be stable through the
system growth. Our next studies will be check the va-
lidity of the effectiveness of the peculiar value of class
trees on evolutional design processes.

Acknowledgment

This work is supported by the Advanced Information Tech-
nology Program (AITP) of Information-technology Promo-
tion Agency (IPA), Japan. We also thank to Mr. Atsushi
Tomoeda, Ms. Harumi Matsuda and Mr. Hirotsugu Kondoh
of SRA Co.,Litd. for their help to collecting measures.

REFERENCES
1. Basili, V. R. and Melo, W. L. A Validation of Object-
Oriented Design Metrics as Quality Indicators, IEEFE

Transactions on Software Engineering, 22,10 (1996),
751-761.

2. Lehman, M. M. and Belady, L. A. Program FEwvolution,
Academic Press (1985).

3. Chidamber, S. R. and Kemerer, C. F. A Metrics Suite
for Object Oriented Design, IFEFE Transactions on Soft-
ware Engineering, 20, 6 (1994), 476-493.

4. Henderson-Selleres, B. and Edwards, J. M. The Object-
Oriented System Life Cycle, Communications of ACM,
33, 9 (1990), 142-159.

5. Lehman, M. M. Programs, Life Cycles and Laws of
Software Evolution, in Lehman, M. M. and Belady, L.
A. ed. Program Evolution, Academic Press (1985), 393—
449.

6. Lorenz, M. and Kidd, J. Object-Oriented Software Met-
rics, Prentice Hall (1994).

7. Nakatani, T., Tamai, T., Tomoeda, A. and Sakoh, H.

Quantitative Analysis on Evolution Process of Object-
Oriented Systems, Proc. of the International Sympo-
stum on Future Software Technology (1996), 49-56.

. Nakatani, T., Tamai, T., Tomoeda, A. and Matsuda,

H. Towards Constructing an Object Evolution Model
Proc. of Asia-Pacific Software Engineering Conference
’97, IEEE (1997). (in Printing)

